Notes for AA214, Chapter 13 ANALYSIS OF SPLIT AND FACTORED FORMS

T. H. Pulliam

Stanford University

Representative Equation for Circulant Operators

- 1. Linear PDE's with constant coefficients with periodic boundary.
- 2. Analysis depends critically on the fact that all circulant matrices commute and have a common set of eigenvectors.
- 3. Assume a split PDE-ODE system with two or more splittings.
- 4. Representative Equation: A_a and A_b are circulant matrices.

$$\frac{d\vec{u}}{dt} = A_a \vec{u} + A_b \vec{u} - \vec{f}(t) \tag{1}$$

Scalar Split Representative Equation

Diagonalization arguements (taking advantage of the common eigenvector of circulant matrices):

The representative equation for split, circulant systems is

$$\frac{du}{dt} = [\lambda_a + \lambda_b + \lambda_c + \cdots]u + ae^{\mu t}$$

where $\lambda_a + \lambda_b + \lambda_c + \cdots$ is the sum of the eigenvalues in A_a , A_b , A_c , \cdots that share the same eigenvector.

Example Analysis of Circulant Systems

1. Linear convection-diffusion equation:

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \tag{2}$$

2. Periodic 2^{nd} order central differences

$$\frac{d\vec{u}}{dt} = -\frac{a}{2\Delta x} B_p(-1, 0, 1) \vec{u} + \frac{\nu}{\Delta x^2} B_p(1, -2, 1) \vec{u}$$
 (3)

3. Represented by the eigenvalues λ_c and λ_d : $\theta_m = 2m\pi/M$.

$$(\lambda_c)_m = \frac{-ia}{\Delta x} \sin \theta_m$$

$$(\lambda_d)_m = -\frac{4\nu}{\Delta x^2} \sin^2 \frac{\theta_m}{2}$$
(4)

The Explicit-Implicit Method Analysis

1. Explicit-Implicit Method:

$$\tilde{u}_{n+1} = [I + hA_c]\vec{u}_n
[I - hA_d]\vec{u}_{n+1} = \tilde{u}_{n+1}$$
(5)

2. Applied to $u' = (\lambda_d + \lambda_c)u + ae^{\mu t}$

$$P(E) = (1 - h\lambda_d)E - (1 + h\lambda_c)$$

3. This leads to the principal σ root

$$\sigma = \frac{1 - i\frac{ah}{\Delta x}\sin\theta_m}{1 + 4\frac{h\nu}{\Delta x^2}\sin^2\frac{\theta_m}{2}}$$

4. Define the dimensionless numbers

$$C_n = \frac{ah}{\Delta x}$$
, Courant number $R_{\Delta} = \frac{a\Delta x}{\nu}$, mesh Reynolds number

5. Absolute value of σ

$$|\sigma| = \frac{\sqrt{1 + C_n^2 \sin^2 \theta_m}}{1 + 4\frac{C_n}{R_\Delta} \sin^2 \frac{\theta_m}{2}} \quad , \quad 0 \le \theta_m \le 2\pi$$
 (6)

- 6. Critical range of θ_m for any combination of C_n and R_{Δ} occurs when θ_m is near 0 (or 2π).
- 7. Condition on C_n and R_{Δ} that makes $|\sigma| \approx 1$ is

$$\left[1 + C_n^2 \sin^2 \epsilon\right] = \left[1 + 4\frac{C_n}{R_\Delta} \sin^2 \frac{\epsilon}{2}\right]^2$$

8. As $\epsilon \to 0$ this gives the stability region

$$C_n < \frac{2}{R_{\Delta}}$$

9. Bounded by a hyperbola

$$C_n = \frac{ah}{\Delta x}, R_{\Delta} = \frac{a\Delta x}{\nu}$$

The Explicit-Explicit Method

1. Explicit-Explicit Method:

$$\tilde{u}_{n+1} = [I + hA_c]\tilde{u}_n
\tilde{u}_{n+1} = [I + hA_d]\tilde{u}_{n+1}$$
(7)

2. An analysis similar to the one given above

$$|\sigma| = \sqrt{1 + C_n^2 \sin^2 \theta_m} \left[1 - 4 \frac{C_n}{R_\Delta} \sin^2 \frac{\theta_m}{2} \right]$$

3. Two critical ranges of θ_m

- (a) Near 0: yields the same result as in the previous example
- (b) Near 180°: produces the constraint that

$$C_n < \frac{1}{2}R_{\Delta}$$
 for $R_{\Delta} \le 2$

4. The totally explicit factored method has a much smaller region of stability when R_{Δ} is small, as expected.

Representative Equation for Space-Split Operators

1. 2-D model equations for the space vector U.

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \tag{8}$$

$$\frac{\partial u}{\partial t} + a_x \frac{\partial u}{\partial x} + a_y \frac{\partial u}{\partial y} = 0 \tag{9}$$

2. Spatial differencing approximations: coupled set of ODE's

$$\frac{dU}{dt} = [A_x + A_y]U - f \tag{10}$$

The 2–D representative equation for model linear systems is

$$\frac{du}{dt} = [\lambda_x + \lambda_y]u + ae^{\mu t}$$

where λ_x and λ_y are any combination of eigenvalues from A_x and A_y , a and μ are constants.

Exact Solution to 2D Representative Equation

1. Restrict to the study of convergence rates and steady-state solutions, let $\mu = 0$

$$\frac{du}{dt} = [\lambda_x + \lambda_y]u + a \tag{11}$$

2. Exact solution

$$u(t) = ce^{(\lambda_x + \lambda_y)t} - \frac{a}{\lambda_x + \lambda_y}$$
 (12)

The Unfactored Implicit Euler Method

1. Unfactored, first-order scheme

$$[I - hA_x - hA_y]U_{n+1} = U_n - hf (13)$$

2. Applied to the representative equation

$$(1 - h\lambda_x - h\lambda_y)u_{n+1} = u_n + ha$$

3. $O\Delta E$ Analysis

$$P(E) = (1 - h \lambda_x - h \lambda_y)E - 1$$

$$Q(E) = h$$
(14)

4. $O\Delta E$ solution

$$u_n = c \left[\frac{1}{1 - h \lambda_x - h \lambda_y} \right]^n - \frac{a}{\lambda_x + \lambda_y}$$

- 5. Like its counterpart in the 1-D case, this method:
 - (a) Is unconditionally stable.
 - (b) Produces the exact (see Eq. 12) steady-state solution (of the ODE) for any h.
 - (c) Converges very rapidly to the steady state when h is large.
- 6. Impractical for large multi-dimensional problems.

Factored Nondelta Form: Implicit Euler Method

1. Factored Euler method

$$[I - hA_x][I - hA_y]U_{n+1} = U_n - hf (15)$$

2. Applying the representative equation.

$$(1 - h\lambda_x)(1 - h\lambda_y)u_{n+1} = u_n + ha$$

3. $O\Delta E$ Analysis

$$P(E) = (1 - h \lambda_x)(1 - h \lambda_y)E - 1$$

$$Q(E) = h$$
(16)

4. $O\Delta E$ solution

$$u_n = c \left[\frac{1}{(1 - h \lambda_x)(1 - h \lambda_y)} \right]^n - \frac{a}{\lambda_x + \lambda_y - h \lambda_x \lambda_y}$$

- (a) Is unconditionally stable.
- (b) Steady-state solution that depends on the choice of h.
- (c) Converges rapidly to a steady state for large h, but the converge solution is completely wrong.
- 5. Requires far less storage and work than the unfactored form.
- 6. Transient solution is only first-order accurate

Factored Delta Form of the Implicit Euler Method

1. Delta form

$$[I - hA_x][I - hA_y]\Delta U_n = h[A_{x+y}U_n + f]$$
 (17)

2. 2-D representative equation

$$(1 - h\lambda_x)(1 - h\lambda_y)(u_{n+1} - u_n) = h(\lambda_x u_n + \lambda_y u_n + a)$$

3. $O\Delta E$ analysis

$$P(E) = (1 - h \lambda_x)(1 - h \lambda_y)E - (1 + h^2 \lambda_x \lambda_y)$$

$$Q(E) = h$$
(18)

4. $O\Delta E$ Solution

$$u_n = c \left[\frac{1 + h^2 \lambda_x \lambda_y}{(1 - h \lambda_x)(1 - h \lambda_y)} \right]^n - \frac{a}{\lambda_x + \lambda_y}$$

- (a) Is unconditionally stable.
- (b) Produces the exact steady-state solution for any choice of h.
- (c) Converges very slowly to the steady-state solution for large value of h, since $|\sigma| \to 1$ as $h \to \infty$.
- 5. Like the factored nondelta form, this method demands far less storage and work than the unfactored form
- 6. Correct steady solution is obtained
- 7. Convergence is not as rapid as that of the unfactored form.

Analysis of the 3-D Model Equation

1. 3D representative equation

$$\frac{du}{dt} = [\lambda_x + \lambda_y + \lambda_z]u + a \tag{19}$$

2. Analyze a 2nd-order accurate trapezoidal method

$$u_{n+1} = u_n + \frac{1}{2}h[(\lambda_x + \lambda_y + \lambda_z)u_{n+1} + (\lambda_x + \lambda_y + \lambda_z)u_n + 2a]$$

3. Delta Form:

$$\left[1 - \frac{1}{2}h(\lambda_x + \lambda_y + \lambda_z)\right] \Delta u_n = h[(\lambda_x + \lambda_y + \lambda_z)u_n + a]$$

4. Factored three space directions

$$\left(1 - \frac{1}{2}h\lambda_x\right)\left(1 - \frac{1}{2}h\lambda_y\right)\left(1 - \frac{1}{2}h\lambda_z\right)\Delta u_n = h\left[(\lambda_x + \lambda_y + \lambda_z)u_n + a\right]$$
(20)

5. Preserves second order accuracy, error terms are both $O(h^3)$.

$$\frac{1}{4}h^2(\lambda_x\lambda_y + \lambda_x\lambda_z + \lambda_y\lambda_z)\Delta u_n$$
 and $\frac{1}{8}h^3\lambda_x\lambda_y\lambda_z$

6. $O\Delta E$ Solution

$$u_{n} = c \left[\frac{\left(1 + \frac{1}{2}h\lambda_{x}\right)\left(1 + \frac{1}{2}h\lambda_{y}\right)\left(1 + \frac{1}{2}h\lambda_{z}\right) - \frac{1}{4}h^{3}\lambda_{x}\lambda_{y}\lambda_{z}}{\left(1 - \frac{1}{2}h\lambda_{x}\right)\left(1 - \frac{1}{2}h\lambda_{y}\right)\left(1 - \frac{1}{2}h\lambda_{z}\right)} \right]^{n}$$

$$-\frac{a}{\lambda_x + \lambda_y + \lambda_z} \tag{21}$$

- 7. 3D Factored Delta-Form Implicit Method
 - (a) Method converges to exact steady-state
 - (b) If the λ 's
 - i. Real negative (Diffusion): Unconditionally Stable
 - ii. Pure imaginary (Convection): Unconditionally UnStable
 - iii. Complex (Convection-Diffusion-Dissipation): Conditionally Stable
 - (c) 3D Delta-Form Implicit Method is computationally efficient over equivalent unfactored scheme.
- 8. Work-horse algorithm for modern implicit codes: e.g. OVERFLOW